4.6 Article

A facile and surfactant-free route for nanomanufacturing of tailored ternary nanoalloys as superior oxygen reduction reaction electrocatalysts

期刊

CATALYSIS SCIENCE & TECHNOLOGY
卷 7, 期 10, 页码 2074-2086

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cy00073a

关键词

-

资金

  1. Sustainable Energy Education and Research Center (SEERC), UTK
  2. CAPES (Coordination for the Improvement of Higher Education-Personnel) - Brazilian Ministry of Higher Education
  3. Center for Materials Processing (CMP), UTK

向作者/读者索取更多资源

We have synthesized ternary nanoalloys (NAs) of Pt with transition metals (Co, Cu, Ni, Ti, Ru, Mn) as oxygen reduction reaction (ORR) electrocatalysts using our recently developed laser ablation synthesis in solution-galvanic replacement reaction (LASiS-GRR) technique as a facile and surfactant-free nanomanufacturing route. The specific choice of the elemental compositions is driven by the respective target metal/metal salt redox potential gaps as well as the target metal and/or metal oxide solubility in desired acids. The high-energy thermodynamics of the LASiS-GRR process enables control of the sizes, elemental compositions and distributions of the ternary NAs through systematic tuning of the initial metal salt concentration, pH, laser fluence and ablation time. Specifically, the PtCuCo NAs synthesized with an elemental composition of 72 : 12 : 16 (Pt : Co : Cu) exhibit the best ORR catalytic activity. The NAs largely possess a shell-core structure with the shell composed mostly of Pt and a minor amount of Cu, along with a uniformly alloyed PtCuCo core. Mass and specific activities for ORR performance of the NAs indicate a 4-and 6.5-fold improvement, respectively, over the corresponding activities of commercial Pt/C. We attribute the enhanced activity to 1) our surfactant/ligand-free synthesis technique that prevents catalytic site degradation and 2) minor alloying of the second transition metal Cu that shifts back the Pt d-band center to an optimal position between those of Pt and the PtCo binary NAs, thereby tuning their binding affinities for both oxygen and oxygenated species. Finally, this work establishes the versatility of the LASiS-GRR technique through the synthesis of other ternary NAs (PtRuNi, PtCoMn, PtNiTi) that also exhibit reasonably good ORR activities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据