4.7 Article

The protective effects of compatibility of Aconiti Lateralis Radix Praeparata and Zingiberis Rhizoma on rats with heart failure by enhancing mitochondrial biogenesis via Sirt1/PGC-1α pathway

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 92, 期 -, 页码 651-660

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2017.05.117

关键词

Aconiti Lateralis Radix Praeparata; Zingiberis Rhizoma; Mitochondrial biogenesis; Sirt1; PGC-1 alpha

资金

  1. National Natural Science Foundation of China [81573631]

向作者/读者索取更多资源

Aconiti Lateralis Radix Praeparata (Fuzi in Chinese) in combination with Zingiberis Rhizoma (Ganjiang in Chinese) is commonly applied for the treatment of heart failure for thousands of years in China. However, its therapeutic mechanism is still poorly defined. This study aimed to investigate whether the compatibility of Fuzi and Ganjiang can protect rats with acute heart failure by enhancing mitochondrial biogenesis via Sirt1/PGC-1 alpha signaling pathway. Hemodynamic parameters, including heart rate and left ventricular maximal rate of pressure rise and decline, were recorded in rats with acute heart failure induced by Propafenone hydrochloride. The serum levels of cardiac enzymes, including creatine kinase, lactate dehydrogenase, brain natriuretic peptide and cardiac troponin T, were also determined. The gene and protein levels of Sirtuin 1 (Sirt1), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) and their downstream transcription factors were measured as well. The results indicated that Fuzi-Ganjiang herbal couple provided more significant benefits by restoring the left ventricular function and cardiac enzyme activities in comparison with their single use. Moreover, this herbal couple possessed a significant cardio-protection by increasing both gene and protein levels of Sirt1 and PGC-1 alpha. In conclusion, the compatibility of Fuzi and Ganjiang had better therapeutic effect than their single use against failing heart, and the underlying mechanisms were partially through increasing mitochondrial biogenesis via Sirt1/PGC-1 alpha pathway. (C) 2017 Published by Elsevier Masson SAS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据