4.7 Article

Global mode method for dynamic modeling of a flexible-link flexible-joint manipulator with tip mass

期刊

APPLIED MATHEMATICAL MODELLING
卷 48, 期 -, 页码 787-805

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2017.02.025

关键词

Flexible manipulator; Flexible joint; Global mode method; Characteristic equation; Orthogonality relation; Dynamical response

资金

  1. National Natural Science Foundation of China [11472089]

向作者/读者索取更多资源

In this paper, the global mode method (GMM) is proposed to obtain a reduced-order analytical dynamic model for a signal flexible-link flexible-joint (SFF) manipulator. Firstly, the nonlinear partial differential equations (PDE) that govern the motion of the flexible link and flexible joint, respectively, are derived by applying the Hamilton principle. By combining the linearized governing equations of motion for a flexible link and the equation of motion for the flexible joint, the characteristic equation is obtained for the whole system. The natural frequencies and global mode shapes of the linearized model of the SFF manipulator are determined, and orthogonality relations of the global mode shapes are established. Then, the global mode shapes and their orthogonality relations are used to truncate the nonlinear PDEs of the SFF manipulator to a nonlinear ordinary differential equation with a few degrees-of-freedom (DOF). For comparison, two other dynamic models of the SFF are derived by employing the assumed mode method (AMM) and finite element method (FEM). To verify the method proposed, the results from the GMM are compared with those obtained from the FEM. The effects of the link length and payload mass on the convergence of AMM model for the first two frequencies are investigated. Based on the dynamic models, obtained by GMM and AMM, dynamical responses for the system with different numbers of modes are worked out numerically, which are compared with those obtained from FEM. These comparisons show a good agreement between the results of the GMM and that of the FEM model, which indeed proved the accuracy and applicability of the GMM model. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据