4.7 Article

Aboveground net primary productivity and carbon balance remain stable under extreme precipitation events in a semiarid steppe ecosystem

期刊

AGRICULTURAL AND FOREST METEOROLOGY
卷 240, 期 -, 页码 1-9

出版社

ELSEVIER
DOI: 10.1016/j.agrformet.2017.03.006

关键词

Climate change; Extreme large precipitation events; Grassland; Aboveground productivity; Ecosystem C exchange

资金

  1. National Key Research and Development Program of China [2016YFC0501801]
  2. Chinese Academy of Sciences [KJRH2015-010]
  3. National Nonprofit Institute Research Grant of CAFINT [CAFYBB2014QB026]
  4. Special Funds for Science and Education Fusion of University of Chinese Academy of Sciences

向作者/读者索取更多资源

Global climate change is projected to increase both the intensity and frequency of extreme precipitation events (EPEs), which are considered to have stronger impacts on ecosystem functions than gradual changes in mean precipitation conditions. In this study, a consecutive 20-day extreme precipitation event (282 mm) was applied during the mid- and late-growing season periods in a semiarid steppe for three years to investigate the effects of extreme large precipitation events on aboveground net primary productivity (ANPP) and ecosystem carbon dioxide (CO2) fluxes, including net ecosystem carbon absorption (NEE), gross primary productivity (GPP) and ecosystem respiration (Re). Although soil moisture was significantly increased by extreme precipitation, and even exceeded field capacity during the treatment periods, ANPP remained stable across all the treatments. There was also little change in mean growing season ecosystem CO2 fluxes under the two precipitation treatments, despite GPP rates decreased by 34.4 and 26.3%, and NEE rates were suppressed by 77 and 68% during the mid- and late-season treatment periods, respectively. The stable CO2 fluxes could be attributed to the recovery of GPP and NEE in 7 and 12 days after the end of EPEs. Our study demonstrated that both ANPP and CO2 fluxes in this semiarid steppe were very stable in the face of extreme large precipitation events, regardless of the timing of events occur. Nevertheless, future, long-term studies need to investigate the potential tipping points or thresholds for ecosystem function shifts, as an increasing occurrence of EPEs has been forecasted in future climate change scenarios. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据