4.6 Article

Zno/NiO coated multi-walled carbon nanotubes for textile dyes degradation

期刊

ARABIAN JOURNAL OF CHEMISTRY
卷 11, 期 6, 页码 880-896

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.arabjc.2017.12.020

关键词

ZnO/NiO coated MWNTs; Co-precipitation method; Photocatalyst; Dyes degradation

资金

  1. Department of Chemistry and National Center for Physics, Quaid-i-Azam University, Islamabad, Pakistan
  2. Department of Environmental Science & Engineering, China University of Geosciences, Wuhan, China

向作者/读者索取更多资源

The nanocomposites of ZnO/NiO loaded Multiwalled Carbon Nanotubes (MWNTs) were successfully fabricated using co-precipitation method. The synthesized photocatalyst were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) spectroscopy, Diffused reflectance spectroscopy (DRS) and Fourier transform infrared spectroscopy (FTIR) for the determination of crystal structure, morphology, elemental composition and optical properties respectively. The photocatalytic activity of as prepared photocatalyst was determined by monitoring the degradation of methyl orange (an azo dye) under ultra-violet (280 nm) and visible (480 nm) irradiation. The Diffuse reflectance spectra (DRS) exhibits absorbance tail around 400 nm, in the near UV region. SEM analysis shows the homogenous dispersion of ZnO and NiO on the surface of MWNTs. The efficiency for Photodegradation of ZnO coated MWNTs is shown to be greater than the efficiency of pristine ZnO. When NiO was loaded on the surface of MWNTs having ZnO coated layer, the activity was further enhanced and reached maximum for 3% NiO loading. The degradation in visible region is believed to be proceeding through self-sensitized degradation of pre-adsorbed dye. A different behavior for degradation was observed for ZnO coated MWNTs and ZnO/NiO coated MWNTs, which suggests that complete mineralization of azo dyes can be achieved in a self-sensitized degradation process after employing ZnO/NiO coated MWNTs. (C) 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据