4.6 Article

Surfactant assisted hydrothermal synthesis of SnO nanoparticles with enhanced photocatalytic activity

期刊

ARABIAN JOURNAL OF CHEMISTRY
卷 13, 期 1, 页码 96-108

出版社

ELSEVIER
DOI: 10.1016/j.arabjc.2017.02.004

关键词

SnO nanoparticles; Triton-X 100; Photocatalysis; Methylene blue; Rhodamine B

资金

  1. Scientific and Technical Research Council of Turkey [113Z656]
  2. Administrative Units of The Research Projects of Selcuk University [17201006]

向作者/读者索取更多资源

SnO nanoparticles have been successfully synthesized in the presence of Triton-X 100 (TX-100) surfactant via hydrothermal method for the first time, and the photocatalytic activity under UV and visible light irradiation for the degradation of Methylene Blue (MB) and Rhodamine B (RdB) organic textile dyes was investigated. The structural, morphological and chemical characterizations were investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), UV-vis. diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL) analysis. The results reveal that the addition of surfactant, TX-100, in the precursor solutions leads to reduction in crystallite size with significant changes in morphological structure of SnO nanoparticles. The synthesized SnO nanoparticles show excellent photocatalytic activity under UV or visible light irradiation. MB and RdB dyes degraded completely under UV irradiation after 90 and 150 min, respectively. Also, MB and RdB dyes degraded only 150 min later under visible light illumination with a little amount of photocatalyst (0.8 g/L). Hence, this work explores the facile route to synthesizing efficient SnO nanoparticles for degrading organic compound under both UV and visible light irradiations. (C) 2017 Production and hosting by Elsevier B.V. on behalf of King Saud University.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据