4.6 Article

Bioengineered three-dimensional co-culture of cancer cells and endothelial cells: A model system for dual analysis of tumor growth and angiogenesis

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 114, 期 8, 页码 1865-1877

出版社

WILEY
DOI: 10.1002/bit.26297

关键词

3D co-culture; angiogenesis; liver cancer; endothelial cells; FRET; tumor growth

资金

  1. Start-Up Research Grant from the University of Macau [SRG2016-00068-FHS]
  2. Academic Research Fund (AcRF) Tier 1 grant of the Ministry of Education of Singapore [M4011279]

向作者/读者索取更多资源

Angiogenesis marks the transformation of a benign local tumor into a life-threatening disease. Many in vitro assays are available on two-dimensional (2D) platforms, however, limited research has been conducted to investigate the behavior of tumors and endothelial cells (ECs) grown on three-dimensional (3D) platforms. This study provides a 3D co-culture spheroid of tumor cells with ECs to study the interplay between ECs and tumor cells. In a 3D co-culture with HepG2 hepatocellular carcinoma (HCC) cells, ECs differentiate to form tubule networks when in co-culture. Addition of angiogenic factors or angiogenesis inhibitors to the model system enhanced or inhibited endothelial differentiation in the 3D model, enabling investigations of the cellular signaling pathways utilized in HCC development. The 3D model demonstrated similar protein expression levels as a HCC xenograft, as well as exhibited upregulation of essential signaling proteins such as Akt/mTor in the 3D model, which is not reflected in the 2D model. The effects of several anti-angiogenic agents, such as sorafenib, sunitinib, and axitinib were analyzed in the 3D co-culture model by utilizing fluorescent proteins and a fluorescence resonance energy transfer (FRET)-based caspase-3 sensor in the ECs, which can detect apoptosis in real time. The apoptotic capability of a drug to inhibit angiogenesis in the 3D model can be easily distinguished via the FRET sensor, and dual screening of anti-angiogenesis and anti-tumor drugs can be achieved in a single step via the 3D co-culture model. In summary, a 3D co-culture model is constructed, where a HCC tumor microenvironment with a hypoxic core and true gradient penetration of drugs is achieved for drug screening purposes and in vitro studies utilizing a small HCC tumor. Biotechnol. Bioeng. 2017;114: 1865-1877. (c) 2017 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据