4.7 Article

Graphical model based continuous estimation of distribution algorithm

期刊

APPLIED SOFT COMPUTING
卷 58, 期 -, 页码 388-400

出版社

ELSEVIER
DOI: 10.1016/j.asoc.2017.04.066

关键词

Estimation of distribution algorithm; Bayesian network; Markov network; Continuous optimization problem

向作者/读者索取更多资源

In this paper, a new estimation of distribution algorithm is introduced. The goal is to propose a method that avoids complex approximations of learning a probabilistic graphical model and considers multivariate dependencies between continuous random variables. A parallel model of some subgraphs with a smaller number of variables is learned as the probabilistic graphical model. In each generation, the joint probability distribution of the selected solutions is estimated using a Gaussian Mixture model. Then, learning the graphical model of dependencies among random variables and sampling are done separately for each Gaussian component. In the learning step, using the selected solutions of each Gaussian mixture component, the structure of a Markov network is learned. This network is decomposed to maximal cliques and a clique graph. Then, complete Bayesian network structures are learned for these subgraphs using an optimization algorithm. The proposed optimization problem is a 0-1 constrained quadratic programming which finds the best permutation of variables. Then, sampling is done from each Bayesian network of each Gaussian component. The introduced method is compared with the other network-based estimation of distribution algorithms for optimization of continuous numerical functions. (C) 2017 Published by Elsevier B.V All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据