4.8 Review

Opening Two-Dimensional Materials for Energy Conversion and Storage: A Concept

期刊

ADVANCED ENERGY MATERIALS
卷 7, 期 19, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201602684

关键词

2D materials; energy conversion; energy storage; interlayer distance; opening

资金

  1. Natural Science Foundation of China [21473124, 21673161]

向作者/读者索取更多资源

The development of two-dimensional (2D) materials is experiencing a renaissance since the adventure of graphene. 2D materials typically exhibit strong in-plane covalent bonding and weak out-of-plane van der Waals interactions through the interlayer gap. Opening 2D materials is an effective way to alter the physical and chemical properties, such as band gap, conductivity, optical property, thermoelectric property, photovoltaic property and superconductivity. A larger interlayer distance means more accessible active sites for catalysis, an ion-accessible surface in the interlayer space, which may greatly enhance the performance of 2D materials for energy conversion and storage. Moreover, opening 2D materials by intercalation can change the band filling state and the Fermi level. This review mainly focuses on the opening of 2D materials and their subsequent applications in energy conversion and storage fields, expecting to promote the development of such a new class of materials, namely expanded 2D materials. The exciting progresses of these expanded materials made in both energy conversion and storage devices including solar cells, thermoelectric devices, electrocatalyst, supercapacitors and rechargeable batteries, is presented and discussed in depth. Furthermore, prospects and further developments in these exciting fields of the expanded 2D materials are also commented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据