4.8 Article

Cu, Co-Embedded N-Enriched Mesoporous Carbon for Efficient Oxygen Reduction and Hydrogen Evolution Reactions

期刊

ADVANCED ENERGY MATERIALS
卷 7, 期 17, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201700193

关键词

electrocatalysts; hydrogen evolution reaction; metal-organic frameworks; nitrogen-doping; oxygen reduction reaction

资金

  1. National Key Basic Research Program of China [2013CB934104]
  2. Natural Science Foundation of China [21473038, 21322311]
  3. Science and Technology Commission of Shanghai Municipality [14JC1490500]
  4. Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
  5. Collaborative Innovation Center of Chemistry for Energy Materials (iChem)

向作者/读者索取更多资源

Rational synthesis of hybrid, earth-abundant materials with efficient electrocatalytic functionalities are critical for sustainable energy applications. Copper is theoretically proposed to exhibit high reduction capability close to Pt, but its high diffusion behavior at elevated fabrication temperatures limits its homogeneous incorporation with carbon. Here, a Cu, Co-embedded nitrogen-enriched mesoporous carbon framework (CuCo@NC) is developed using, a facile Cu-confined thermal conversion strategy of zeolitic imidazolate frameworks (ZIF-67) pre-grown on Cu(OH)(2) nanowires. Cu ions formed below 450 degrees C are homogeneously confined within the pores of ZIF-67 to avoid self-aggregation, while the existence of Cu. N bonds further increases the nitrogen content in carbon frameworks derived from ZIF-67 at higher pyrolysis temperatures. This CuCo@NC electrocatalyst provides abundant active sites, high nitrogen doping, strong synergetic coupling, and improved mass transfer, thus significantly boosting electrocatalytic performances in oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). A high half-wave potential (0.884 V vs reversible hydrogen potential, RHE) and a large diffusion-limited current density are achieved for ORR, comparable to or exceeding the best reported earth-abundant ORR electrocatalysts. In addition, a low overpotential (145 mV vs RHE) at 10 mA cm(-2) is demonstrated for HER, further suggesting its great potential as an efficient electrocatalyst for sustainable energy applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据