4.8 Article

Design and Fabrication of a Precious Metal-Free Tandem Core-Shell p+n Si/W-Doped BiVO4 Photoanode for Unassisted Water Splitting

期刊

ADVANCED ENERGY MATERIALS
卷 7, 期 22, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201701515

关键词

bias-free; bismuth vanadate; black silicon; photoelectrochemical water splitting; tandem cells

资金

  1. NSF grant [CBET-1433442]
  2. National Science Foundation, Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
  3. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office

向作者/读者索取更多资源

Tandem photoelectrochemical water splitting cells utilizing crystalline Si and metal oxide photoabsorbers are promising for low-cost solar hydrogen production. This study presents a device design and a scalable fabrication scheme for a tandem heterostructure photoanode: p(+)n black silicon (Si)/SnO2 interface/W-doped bismuth vanadate (BiVO4)/cobalt phosphate (CoPi) catalyst. The black-Si not only provides a substantial photovoltage of 550 mV, but it also serves as a conductive scaffold to decrease charge transport path-lengths within the W-doped BiVO4 shell. When coupled with cobalt phosphide (CoP) nanoparticles as hydrogen evolution catalysts, the device demonstrates spontaneous water splitting without employing any precious metals, achieving an average solar-to-hydrogen efficiency of 0.45% over the course of an hour at pH 7. This fabrication scheme offers the modularity to optimize individual cell components, e.g., Si nanowire dimensions and metal oxide film thickness, involving steps that are compatible with fabricating monolithic devices. This design is general in nature and can be readily adapted to novel, higher performance semiconducting materials beyond BiVO4 as they become available, which will accelerate the process of device realization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据