4.8 Article

Balancing High Open Circuit Voltage over 1.0 V and High Short Circuit Current in Benzodithiophene-Based Polymer Solar Cells with Low Energy Loss: A Synergistic Effect of Fluorination and Alkylthiolation

期刊

ADVANCED ENERGY MATERIALS
卷 8, 期 8, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201701471

关键词

alkylthiolation; benzo[1,2-b:4,5-b']dithiophene; fluorination; polymer solar cells; synergistic effect

资金

  1. Danish National Research Foundation (DNRF) for the Danish-Chinese Center for Organic-based Photovoltaic Cells with Morphological Control
  2. National Natural Science Foundation of China [51573205]
  3. Youth Innovation Promotion Association CAS [2016194]
  4. Sino-Danish Center for Education and Research (SDC)

向作者/读者索取更多资源

Based on the most recently significant progress within the last one year in organic photovoltaic research from either alkylthiolation or fluorination on benzo[1,2-b: 4,5-b'] dithiophene moiety for high efficiency polymer solar cells (PSCs), two novel simultaneously fluorinated and alkylthiolated benzo[1,2-b: 4,5-b'] dithiophene (BDT)-based donor-acceptor (D-A) polymers, poly(4,8-bis(5'-((2''-ethylhexyl) thio)-4'-fluorothiophen-2'-yl) benzo[1,2-b: 4,5-b'] dithiophene-2,6-diyl)-alt-2'-ethylhexyl-3-fluorothieno[3,4-b] thiophene-2-carboxylate (PBDTT-SF-TT) and poly(4,8-bis(5'-((2''-ethylhexyl) thio)-4'-fluorothiophen-2'-yl) benzo[1,2-b: 4,5-b'] dithiophene-2,6-diyl)-alt-1,3bis( thiophen-2-yl)-5,7-bis(2-ethylhexyl) benzo[1,2-c: 4,5-c'] dithiophene-4,8-dione (PBDTT-SF-BDD), namely, via an advantageous and synthetically economic route for the key monomer are reported herein. Synergistic effects of fluorination and alkylthiolation on BDT moieties are discussed in detail, which is based on the superior balance between high V-oc and large J(sc) when PBDTTSF- TT/PC71BM and PBDTT-SF-BDD/ PC71BM solar cells present their high V-oc as 1.00 and 0.97 V (associated with their deep highest occupied molecular orbital level of -5.54 and -5.61 eV), a moderately high J(sc) of 14.79 and 14.70 mA cm(-2), and thus result a high power conversion efficiency of 9.07% and 9.72%, respectively. Meanwhile, for PBDTT-SF-TT, a very low energy loss of 0.59 eV is pronounced, leading to the promisingly high voltage, and furthermore performance study and morphological results declare an additive-free PSC from PBDTT-SF-TT, which is beneficial to practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据