4.8 Article

Photogenerated Carrier Mobility Significantly Exceeds Injected Carrier Mobility in Organic Solar Cells

期刊

ADVANCED ENERGY MATERIALS
卷 7, 期 9, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201602143

关键词

-

资金

  1. Research Council of Lithuania [MIP-085/2015]
  2. Science Council
  3. Knut and Alice Wallenberg foundation through a Wallenberg Scholar grant

向作者/读者索取更多资源

Charge transport in organic photovoltaic (OPV) devices is often characterized by space-charge limited currents (SCLC). However, this technique only probes the transport of charges residing at quasi-equilibrium energies in the disorder-broadened density of states (DOS). In contrast, in an operating OPV device the photogenerated carriers are typically created at higher energies in the DOS, followed by slow thermalization. Here, by ultrafast time-resolved experiments and simulations it is shown that in disordered polymer/fullerene and polymer/polymer OPVs, the mobility of photogenerated carriers significantly exceeds that of injected carriers probed by SCLC. Time-resolved charge transport in a polymer/polymer OPV device is measured with exceptionally high (picosecond) time resolution. The essential physics that SCLC fails to capture is that of photo-generated carrier thermalization, which boosts carrier mobility. It is predicted that only for materials with a sufficiently low energetic disorder, thermalization effects on carrier transport can be neglected. For a typical device thickness of 100 nm, the limiting energetic disorder is sigma approximate to 71 (56) meV for maximum-power point (short-circuit) conditions, depending on the error one is willing to accept. As in typical OPV materials the disorder is usually larger, the results question the validity of the SCLC method to describe operating OPVs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据