4.8 Article

Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films

期刊

ADVANCED ENERGY MATERIALS
卷 7, 期 20, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201700977

关键词

device stability; oxygen induced degradation; perovskite solar cells; photovoltaics

资金

  1. HGSFP
  2. Engineering and Physical Sciences Research Council [EP/M024881/1] Funding Source: researchfish
  3. EPSRC [EP/M024881/1] Funding Source: UKRI

向作者/读者索取更多资源

This paper investigates the impact of microstructure on the degradation rate of methylammonium lead triiodide (MAPbI(3)) perovskite films upon exposure to light and oxygen. By comparing the oxygen induced degradation of perovskite films of different microstructure-fabricated using either a lead acetate trihydrate precursor or a solvent engineering technique-it is demonstrated that films with larger and more uniform grains and better electronic quality show a significantly reduced degradation compared to films with smaller, more irregular grains. The effect of degradation on the optical, compositional, and microstructural properties of the perovskite layers is characterized and it is demonstrated that oxygen induced degradation is initiated at the layer surface and grain boundaries. It is found that under illumination, irreversible degradation can occur at oxygen levels as low as 1%, suggesting that degradation can commence already during the device fabrication stage. Finally, this work establishes that improved thin-film microstructure, with large uniform grains and a low density of defects, is a prerequisite for enhanced stability necessary in order to make MAPbI(3) a promising long lived and low cost alternative for future photovoltaic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据