4.8 Article

Tuning Energy Levels without Negatively Affecting Morphology: A Promising Approach to Achieving Optimal Energetic Match and Efficient Nonfullerene Polymer Solar Cells

期刊

ADVANCED ENERGY MATERIALS
卷 7, 期 15, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201602119

关键词

-

资金

  1. National Basic Research Program of China (973 Program) [2013CB834701, 2014CB643501]
  2. Hong Kong Research Grants Council [T23-407/13 N, N_HKUST623/13, 16305915, 16322416, 606012]
  3. HK JEBN Limited
  4. HKUST president's office [FP201]
  5. National Science Foundation of China [21374090]
  6. Hong Kong Innovation and Technology Commission [ITC-CNERC14SC01, ITS/083/15]

向作者/读者索取更多资源

One advantage of nonfullerene polymer solar cells (PSCs) is that they can yield high open-circuit voltage (VOC) despite their relatively low optical bandgaps. To maximize the VOC of PSCs, it is important to fine-tune the energy level offset between the donor and acceptor materials, but in a way not negatively affecting the morphology of the donor: acceptor (D: A) blends. Here, an effective material design rationale based on a family of D-A1-D-A2 terthiophene (T3) donor polymers is reported, which allows for the effective tuning of energy levels but without any negative impacts on the morphology of the blend. Based on a T3 donor unit combined with difluorobenzothiadiazole (ffBT) and difluorobenzoxadiazole (ffBX) acceptor units, three donor polymers are developed with highly similar morphological properties. This is particularly surprising considering that the corresponding quaterthiophene polymers based on ffBT and ffBX exhibit dramatic differences in their solubility and morphological properties. With the fine-tuning of energy levels, the T3 polymers yield nonfullerene PSCs with a high efficiency of 9.0% for one case and with a remarkably low energy loss (0.53 V) for another polymer. This work will facilitate the development of efficient nonfullerene PSCs with optimal energy levels and favorable morphology properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据