4.8 Article

Rational Design of Metal-Organic Framework Derived Hollow NiCo2O4 Arrays for Flexible Supercapacitor and Electrocatalysis

期刊

ADVANCED ENERGY MATERIALS
卷 7, 期 12, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201602391

关键词

flexible energy storage devices; hollow nanostructures; metal organic framework; metal oxides; oxygen evolution reaction catalysts

资金

  1. 973 Program [2013CB632701]
  2. National Natural Science Foundation of China [51202163]
  3. Academic Research Fund (AcRF) at the National University of Singapore [1 R-284-000-146-112]

向作者/读者索取更多资源

Metal-organic frameworks (MOFs) are promising porous precursors for the construction of various functional materials for high-performance electrochemical energy storage and conversion. Herein, a facile two-step solution method to rational design of a novel electrode of hollow NiCo2O4 nanowall arrays on flexible carbon cloth substrate is reported. Uniform 2D cobalt-based wall-like MOFs are first synthesized via a solution reaction, and then the 2D solid nanowall arrays are converted into hollow and porous NiCo2O4 nanostructures through an ion-exchange and etching process with an additional annealing treatment. The as-obtained NiCo2O4 nanostructure arrays can provide rich reaction sites and short ion diffusion path. When evaluated as a flexible electrode material for supercapacitor, the as-fabricated NiCo2O4 nanowall electrode shows remarkable electrochemical performance with excellent rate capability and long cycle life. In addition, the hollow NiCo2O4 nanowall electrode exhibits promising electrocatalytic activity for oxygen evolution reaction. This work provides an example of rational design of hollow nanostructured metal oxide arrays with high electrochemical performance and mechanical flexibility, holding great potential for future flexible multifunctional electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据