4.8 Article

The Proton Trap Technology-Toward High Potential Quinone-Based Organic Energy Storage

期刊

ADVANCED ENERGY MATERIALS
卷 7, 期 20, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201700259

关键词

conducting redox polymers; organic batteries; proton trap; quinones; renewable energy storage

资金

  1. Swedish Foundation for Strategic Research (SSF)
  2. Swedish Research Council (VR)
  3. Carl Trygger Foundation
  4. Olle Engqvist Byggmastare Foundation
  5. Swedish Energy Agency

向作者/读者索取更多资源

An organic cathode material based on a copolymer of poly(3,4-ethylenedioxythiophene) containing pyridine and hydroquinone functionalities is described as a proton trap technology. Utilizing the quinone to hydroquinone redox conversion, this technology leads to electrode materials compatible with lithium and sodium cycling chemistries. These materials have high inherent potentials that in combination with lithium give a reversible output voltage of above 3.5 V (vs Li0/+) without relying on lithiation of the material, something that is not showed for quinones previously. Key to success stems from coupling an intrapolymeric proton transfer, realized by an incorporated pyridine proton donor/acceptor functionality, with the hydroquinone redox reactions. Trapping of protons in the cathode material effectively decouples the quinone redox chemistry from the cycling chemistry of the anode, which makes the material insensitive to the nature of the electrolyte cation and hence compatible with several anode materials. Furthermore, the conducting polymer backbone allows assembly without any additives for electronic conductivity. The concept is demonstrated by electrochemical characterization in several electrolytes and finally by employing the proton trap material as the cathode in lithium and sodium batteries. These findings represent a new concept for enabling high potential organic materials for the next generation of energy storage systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据