4.7 Review

Endoplasmic reticulum stress regulates tumor growth and anti-tumor immunity: a promising opportunity for cancer immunotherapy

期刊

CANCER IMMUNOLOGY IMMUNOTHERAPY
卷 66, 期 8, 页码 1069-1078

出版社

SPRINGER
DOI: 10.1007/s00262-017-2019-6

关键词

Tumor microenvironment; Myeloid-derived suppressor cells; Regulatory myeloid suppressor cells; T cells; Endoplasmic reticulum stress; Unfolded protein responses

资金

  1. National Cancer Institute, NIH [CA18485]

向作者/读者索取更多资源

The endoplasmic reticulum (ER) stress is a cellular process that occurs as a consequence of several stress circumstances, such as the accumulation of unfolded proteins in the lumen of the ER or distinct insults that disturb the ER normal function. Different conditions in the tumor microenvironment (TME), including hypoxia, nutrient deprivation, and the elevated production of reactive oxygen and nitrogen species destabilize the loading and dispatching of the newly synthesized proteins, triggering ER stress in cancer cells and tumor-infiltrating leukocytes. In order to cope with TME-induced ER stress, tumor and stromal cells initiate an adaptive response process that aims to resolve ER stress and to restore cellular homeostasis, which is referred as the unfolded protein responses (UPR). Paradoxically, the UPR can also induce cell death under severe and/or permanent ER stress. The UPR is started through three mediators, the activation of the inositol-requiring enzyme-1 alpha, the pancreatic ER kinase-like ER kinase, and the activating transcription factor 6. In this minireview, we will discuss the pro- and anti-tumorigenic role of the UPR in cancer cells. In addition, we will describe the effects of the TME-induced ER stress in the immunosuppressive activity of tumor-infiltrating myeloid cells. Also, we will review the results of emerging therapeutic interventions that target ER stress and the UPR mediators in cancer. We postulate that the inhibition of ER stress or the UPR-related elements could represent a significant approach to increase the efficacy of various forms of cancer immunotherapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据