4.8 Article

Oxygen Vacancies Confined in Nickel Molybdenum Oxide Porous Nanosheets for Promoted Electrocatalytic Urea Oxidation

期刊

ACS CATALYSIS
卷 8, 期 1, 页码 1-7

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.7b03177

关键词

oxygen vacancy; porous nanosheet; 3D configuration; urea oxidation; nickel molybdenum oxide

资金

  1. National Basic Research Program of China [2015CB932302]
  2. Natural Science Foundation of China [U1432133, 1162163, U1632154]
  3. National Program for support of Top-notch Yong Professionals
  4. Anhui Provincial Natural Science Foundation [1608085QA08]
  5. Fundamental Research Funds for the Central Universities [WK2060190080]
  6. Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology

向作者/读者索取更多资源

The direct urea fuel cell (DUFC), as an efficient technology for generating power from urea, shows great potential for energy-sustainable development but is greatly hindered by the slow kinetics of the urea oxidation reaction (UOR). Herein, we highlighted a defect engineering strategy to design oxygen vacancy-rich NiMoO4 nanosheets as a promising platform to study the relationship between O vacancies and UOR activity. Experimental/theoretical results confirm that the rich O vacancies confined in NiMoO4 nanosheets successfully bring synergetic effects of higher exposed active sites, faster electron transport, and lower adsorption energy of urea molecules, giving rise to largely improved UOR activity. As expected, the r-NiMoO4/NF 3D electrode exhibits a higher current density of 249.5 mA cm(-2), which is about 1.9 and 5.0 times larger than those of p-NiMoO4/NF and Ni-Mo precursor/NF at a potential of 0.6 V. Our finding will be a promising pathway to develop non-noble materials as highly efficient UOR catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据