4.7 Article

The Effects of Mg/Si on the Exoplanetary Refractory Oxygen Budget

期刊

ASTROPHYSICAL JOURNAL
卷 845, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/aa7f79

关键词

astrochemistry; Earth; planets and satellites: formation; planets and satellites: fundamental parameters; planets and satellites: interiors; planets and satellites: terrestrial planets

资金

  1. NSF CAREER grant [EAR-60023026]
  2. Division Of Earth Sciences
  3. Directorate For Geosciences [955647] Funding Source: National Science Foundation

向作者/读者索取更多资源

Solar photospheric abundances of refractory elements mirror the Earth's to within similar to 10 mol% when normalized to the dominant terrestrial-planet-forming elements Mg, Si, and Fe. This allows for the adoption of solar composition as an order-of-magnitude proxy for Earth's. It is not known, however, the degree to which this mirroring of stellar and terrestrial planet abundances holds true for other star-planet systems without determination of the composition of initial planetesimals via condensation sequence calculations and post condensation processes. We present the open-source Arbitrary Composition Condensation Sequence calculator (ArCCoS) to assess how the elemental composition of a parent star affects that of the planet-building material, including the extent of oxidation within the planetesimals. We demonstrate the utility of ArCCoS by showing how variations in the abundance of the stellar refractory elements Mg and Si affect the condensation of oxygen, a controlling factor in the relative proportions of planetary core and silicate mantle material. This thereby removes significant degeneracy in the interpretation of the structures of exoplanets, as well as provides observational tests for the validity of this model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据