4.6 Article

Fabrication and Characterization of Cross-linked Polybenzimidazole Based Membranes for High Temperature PEM Fuel Cells

期刊

ELECTROCHIMICA ACTA
卷 245, 期 -, 页码 1-13

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2017.05.111

关键词

Polybenzimidazole; cross-linked; high temperature proton exchange; membrane fuel cells; acid leach

资金

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [TUBITAK 1001-214M301]

向作者/读者索取更多资源

In this study different types of crosslinked polybenzimidazole (PBI) membranes were compared as high temperature proton exchange membrane fuel cells (HT-PEMFC). Cross-linking of PBI was performed with different cross-linkers including bisphenol A diglycidyl ether (BADGE), ethylene glycol diglycidyl ether (EGDE), alpha-alpha'-dibromo-p-xylene (DBpX), and terephthalaldehyde (TPA). The crosslinked membranes have been characterized by thermogravimetric analysis, scanning electron microscopy, acid uptake and impedance analyses. The crosslinking of the PBI polymer matrix helps to improve the acid retention properties. PBI/BADGE presented the highest acid retention properties. Proton conductivities of the membranes were comparable to that of commercial membranes. Conductivity values up to 0.151 S.cm(-1) were obtained at 180 degrees C with PBI/DBpX membranes. Gas diffusion electrodes (GDE) were fabricated by an ultrasonic coating technique with 0.6 mg Pt.cm(-2) catalyst loading for both anode and cathode. The crosslinked membranes were tested in a single HT-PEMFC with a 5 cm(2) active area at 165 degrees C without humidification. PBI/BADGE crosslinked membranes demonstrated stability and high performance on single cell HT-PEMFC tests. The maximum power density for PBI/BADGE was determined as 0.123 W. cm(-2). As a result, the experimental results suggested that the PBI/ BADGE and PBI/DBpX cross-linked membranes are promising electrolyte options for HT-PEMFC. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据