4.8 Article

Self-Regulating Iris Based on Light-Actuated Liquid Crystal Elastomer

期刊

ADVANCED MATERIALS
卷 29, 期 30, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201701814

关键词

-

资金

  1. European Research Council [679646]
  2. graduate school of Tampere University of Technology (TUT)
  3. European Research Council (ERC) [679646] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

The iris, found in many animal species, is a biological tissue that can change the aperture (pupil) size to regulate light transmission into the eye in response to varying illumination conditions. The self-regulation of the eye lies behind its autofocusing ability and large dynamic range, rendering it the ultimate imaging device and a continuous source of inspiration in science. In optical imaging devices, adjustable apertures play a vital role as they control the light exposure, the depth of field, and optical aberrations of the systems. Tunable irises demonstrated to date require external control through mechanical actuation, and are not capable of autonomous action in response to changing light intensity without control circuitry. A self-regulating artificial iris would offer new opportunities for device automation and stabilization. Here, this paper reports the first iris-like, liquid crystal elastomer device that can perform automatic shape-adjustment by reacting to the incident light power density. Similar to natural iris, the device closes under increasing light intensity, and upon reaching the minimum pupil size, reduces the light transmission by a factor of seven. The light-responsive materials design, together with photoalignment-based control over the molecular orientation, provides a new approach to automatic, self-regulating optical systems based on soft smart materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据