4.8 Article

Origami-based tunable truss structures for nonvolatile mechanical memory operation

期刊

NATURE COMMUNICATIONS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-017-00670-w

关键词

-

资金

  1. ONR [N000141410388]
  2. NSF [CAREER-1553202]
  3. Washington Research Foundation
  4. Directorate For Engineering
  5. Div Of Civil, Mechanical, & Manufact Inn [1553202] Funding Source: National Science Foundation

向作者/读者索取更多资源

Origami has recently received significant interest from the scientific community as a method for designing building blocks to construct metamaterials. However, the primary focus has been placed on their kinematic applications by leveraging the compactness and auxeticity of planar origami platforms. Here, we present volumetric origami cells-specifically triangulated cylindrical origami (TCO)-with tunable stability and stiffness, and demonstrate their feasibility as non-volatile mechanical memory storage devices. We show that a pair of TCO cells can develop a double-well potential to store bit information. What makes this origami-based approach more appealing is the realization of two-bit mechanical memory, in which two pairs of TCO cells are interconnected and one pair acts as a control for the other pair. By assembling TCO-based truss structures, we experimentally verify the tunable nature of the TCO units and demonstrate the operation of purely mechanical one-and two-bit memory storage prototypes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据