4.5 Article

Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma

期刊

CLIMATE OF THE PAST
卷 13, 期 7, 页码 959-975

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/cp-13-959-2017

关键词

-

资金

  1. Royal Society of New Zealand's Marsden Fund [VUW1203]
  2. Antarctic Research Centre, Victoria University of Wellington
  3. ANDRILL
  4. GNS Science
  5. NSF Polar Programs [ANT-1043712, PLR-1245899]
  6. Australian Research Council (ARC) [FL100100195]
  7. NASA [NNX13AM16G, NNX13AK27G]
  8. Directorate For Geosciences
  9. Office of Polar Programs (OPP) [1245899] Funding Source: National Science Foundation

向作者/读者索取更多资源

The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23 Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6 +/- 2.8 m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400 ppm). Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography pro-duce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据