4.8 Article

Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling

期刊

NATURE COMMUNICATIONS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-017-01061-x

关键词

-

资金

  1. EU project ScaleQIT
  2. ERC Synergy grant QC-lab
  3. Netherlands Organisation for Scientific Research as part of the Frontiers of Nanoscience program (NWO/OCW)
  4. Vidi Grant [639.042.423]
  5. Dutch Organization for Fundamental Research on Matter (FOM)
  6. Microsoft Corporation Station Q

向作者/读者索取更多资源

The quantum Rabi model describing the fundamental interaction between light and matter is a cornerstone of quantum physics. It predicts exotic phenomena like quantum phase transitions and ground-state entanglement in ultrastrong and deep-strong coupling regimes, where coupling strengths are comparable to or larger than subsystem energies. Demonstrating dynamics remains an outstanding challenge, the few experiments reaching these regimes being limited to spectroscopy. Here, we employ a circuit quantum electrodynamics chip with moderate coupling between a resonator and transmon qubit to realise accurate digital quantum simulation of deep-strong coupling dynamics. We advance the state of the art in solid-state digital quantum simulation by using up to 90 second-order Trotter steps and probing both subsystems in a combined Hilbert space dimension of similar to 80, demonstrating characteristic Schrdinger-cat-like entanglement and large photon build-up. Our approach will enable exploration of extreme coupling regimes and quantum phase transitions, and demonstrates a clear first step towards larger complexities such as in the Dicke model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据