4.8 Article

A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity

期刊

NATURE COMMUNICATIONS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms14059

关键词

-

资金

  1. National Natural Science Foundation [81330053, 81630067, 81472589, 81672602, 81471466, 81572597, 81502264]
  2. Beijing Nova Program [Z141102001814055, xx2013034]
  3. Logistics Scientific Research Project [BWS16J010]

向作者/读者索取更多资源

Tumour radiotherapy resistance involves the cell cycle pathway. CDC25 phosphatases are key cell cycle regulators. However, how CDC25 activity is precisely controlled remains largely unknown. Here, we show that LIM domain-containing proteins, such as FHL1, increase inhibitory CDC25 phosphorylation by forming a complex with CHK2 and CDC25, and sequester CDC25 in the cytoplasm by forming another complex with 14-3-3 and CDC25, resulting in increased radioresistance in cancer cells. FHL1 expression, induced by ionizing irradiation in a SP1- and MLL1-dependent manner, positively correlates with radioresistance in cancer patients. We identify a cell-penetrating 11 amino-acid motif within LIM domains (eLIM) that is sufficient for binding CHK2 and CDC25, reducing the CHK2-CDC25 and CDC25-14-3-3 interaction and enhancing CDC25 activity and cancer radiosensitivity accompanied by mitotic catastrophe and apoptosis. Our results provide novel insight into molecular mechanisms underlying CDC25 activity regulation. LIM protein inhibition or use of eLIM may be new strategies for improving tumour radiosensitivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据