4.8 Article

Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays

期刊

BIOSENSORS & BIOELECTRONICS
卷 94, 期 -, 页码 513-522

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2017.03.046

关键词

Molecular beacon; Surface plasmon resonance; Plasmonic nanoparticle; Quantum dot; Zika virus

资金

  1. Japan Society for the Promotion of Science (JSPS) [26-04354]
  2. Grants-in-Aid for Scientific Research [25293134, 14F04354] Funding Source: KAKEN

向作者/读者索取更多资源

The current epidemic caused by the Zika virus (ZIKV) and the devastating effects of this virus on fetal development, which result in an increased incidence of congenital microcephaly symptoms, have prompted the World Health Organization (WHO) to declare the ZIKV a public health issue of global concern. Efficient probes that offer high detection sensitivity and specificity are urgently required to aid in the point-of-care treatment of the virus. In this study, we show that localized surface plasmon resonance (LSPR) signals from plasmonic nanoparticles (NPs) can be used to mediate the fluorescence signal from semiconductor quantum dot (Qdot) nanocrystals in a molecular beacon (MB) biosensor probe for ZIKV RNA detection. Four different plasmonic NPs functionalized with 3-mercaptopropionic acid (MPA), namely MPA-AgNPs, MPA-AuNPs, core/shell (CS) Au/AgNPs, and alloyed AuAgNPs, were synthesized and conjugated to L-glutathione-capped CdSeS alloyed Qdots to form the respective LSPR-mediated fluorescence nanohybrid. The concept of the plasmonic NP-Qdot-MB biosensor involves using LSPR from the plasmonic NPs to mediate a fluorescence signal to the Qdots, triggered by the hybridization of the target ZIKV RNA with the DNA loop sequence of the MB. The extent of the fluorescence enhancement based on ZIKV RNA detection was proportional to the LSPR-mediated fluorescence signal. The limits of detection (LODs) of the nanohybrids were as follows: alloyed AuAgNP-Qdot646-MB (1.7 copies/mL)) > CS Au/AgNP-Qdot646-MB (LOD =2.4 copies/mL) > AuNP-Qdot646-MB (LOD =2.9 copies/mL) > AgNP-Qdot646-MB (LOD =7.6 copies/mL). The LSPR-mediated fluorescence signal was stronger for the bimetallic plasmonic NP-Qdots than the single metallic plasmonic NP-Qdots. The plasmonic NP-Qdot-MB biosensor probes exhibited excellent selectivity toward ZIKV RNA and could serve as potential diagnostic probes for the point-of care detection of the virus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据