4.8 Article

Environmentally stable interface of layered oxide cathodes for sodium-ion batteries

期刊

NATURE COMMUNICATIONS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-017-00157-8

关键词

-

资金

  1. NSF of China [21633003]
  2. JST-CREST Phase Interface Science for Highly Efficient Energy Utilization, JST (Japan)

向作者/读者索取更多资源

Sodium-ion batteries are strategically pivotal to achieving large-scale energy storage. Layered oxides, especially manganese-based oxides, are the most popular cathodes due to their high reversible capacity and use of earth-abundant elements. However, less noticed is the fact that the interface of layered cathodes always suffers from atmospheric and electrochemical corrosion, leading to severely diminished electrochemical properties. Herein, we demonstrate an environmentally stable interface via the superficial concentration of titanium, which not only overcomes the above limitations, but also presents unique surface chemical/electrochemical properties. The results show that the atomic-scale interface is composed of spinel-like titanium (III) oxides, enhancing the structural/electrochemical stability and electronic/ionic conductivity. Consequently, the interface-engineered electrode shows excellent cycling performance among all layered manganese-based cathodes, as well as high-energy density. Our findings highlight the significance of a stable interface and, moreover, open opportunities for the design of well-tailored cathode materials for sodium storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据