4.7 Article

Pt/graphene aerogel deposited in Cu foam as a 3D binder-free cathode for CO2 reduction into liquid chemicals in a TiO2 photoanode-driven photoelectrochemical cell

期刊

CHEMICAL ENGINEERING JOURNAL
卷 322, 期 -, 页码 22-32

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2017.03.126

关键词

Pt/graphene aerogel; Cu foam; CO2 reduction; Photoelectrochemical

资金

  1. National Natural Science Foundation-China [51676171]
  2. Zhejiang Provincial Natural Science Foundation-China [LR14E060002]

向作者/读者索取更多资源

A nanostructured Pt/graphene aerogel directly deposited in Cu foam (Pt/GA/CF) was used as a 3D binder free cathode to convert CO2 into liquid chemicals in a TiO2 photoanode-driven photoelectrochemical cell. The surface morphology, microstructure, mineralogical and elemental compositions, and electrochemical performance of the Pt/GA/CF electrode were characterized via SEM/EDX, TEM, X-ray diffraction, X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy (EIS), and chronocoulometry (CC). EIS analysis revealed that Pt/GA/CF with reduced impedance possessed a better electron transfer capacity than the electrode that combines Pt-modified reduced graphene oxide with CF through polymer binders (Pt/RGO/CF). SEM and CC analyses confirmed that the uniform dispersion of 3D nanoporous Pt/GA in CF scaffold effectively prevented its self-agglomeration and increased the electrochemical adsorption surface area of Pt/GA/CF to 15 times higher than that of Pt/RGO/CF. The efficient charge transportation and high reactant adsorptivity of the Pt/GA/CF electrode significantly improved CO2 reduction and facilitated the conversion of Cl products to high-order products. Formic acid, acetic acid, propionic acid, methanol, and ethanol were detected as the liquid products of CO2 reduction. The carbon atom conversion rate of CO2 reduction on Pt/GA/CF markedly increased to 5040 nmol/(h cm(2)). (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据