4.8 Article

Optical trapping of otoliths drives vestibular behaviours in larval zebrafish

期刊

NATURE COMMUNICATIONS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-017-00713-2

关键词

-

资金

  1. NHMRC [APP1066887]
  2. Simons Foundation Explorer Award [336331]
  3. ARC [DP140102036, DP110103612, FT110100887, DP140100753]
  4. UQ Postgraduate Scholarship
  5. Australian Research Council [FT110100887] Funding Source: Australian Research Council

向作者/读者索取更多资源

The vestibular system, which detects gravity and motion, is crucial to survival, but the neural circuits processing vestibular information remain incompletely characterised. In part, this is because the movement needed to stimulate the vestibular system hampers traditional neuroscientific methods. Optical trapping uses focussed light to apply forces to targeted objects, typically ranging from nanometres to a few microns across. In principle, optical trapping of the otoliths (ear stones) could produce fictive vestibular stimuli in a stationary animal. Here we use optical trapping in vivo to manipulate 55-micron otoliths in larval zebrafish. Medial and lateral forces on the otoliths result in complementary corrective tail movements, and lateral forces on either otolith are sufficient to cause a rolling correction in both eyes. This confirms that optical trapping is sufficiently powerful and precise to move large objects in vivo, and sets the stage for the functional mapping of the resulting vestibular processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据