4.8 Article

Oxygen evolution reaction dynamics monitored by an individual nanosheet-based electronic circuit

期刊

NATURE COMMUNICATIONS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-017-00778-z

关键词

-

资金

  1. National Basic Research Program of China [2013CB934103, 2012CB933003]
  2. National Natural Science Foundation of China [51302203, 11525211, 51272197, 51502227]
  3. International Science & Technology Cooperation Program of China [2013DFA50840]
  4. Hubei Science Fund for Distinguished Young Scholars [2014CFA035]
  5. National Science Fund for Distinguished Young Scholars
  6. Fundamental Research Funds for the Central Universities [2013-ZD-7, 2014-YB-02]
  7. Australian Government

向作者/读者索取更多资源

The oxygen evolution reaction involves complex interplay among electrolyte, solid catalyst, and gas-phase and liquid-phase reactants and products. Monitoring catalysis interfaces between catalyst and electrolyte can provide valuable insights into catalytic ability. But it is a challenging task due to the additive solid supports in traditional measurement. Here we design a nanodevice platform and combine on-chip electrochemical impedance spectroscopy measurement, temporary I-V measurement of an individual nanosheet, and molecular dynamic calculations to provide a direct way for nanoscale catalytic diagnosis. By removing O-2 in electrolyte, a dramatic decrease in Tafel slope of over 20% and early onset potential of 1.344 V vs. reversible hydrogen electrode are achieved. Our studies reveal that O-2 reduces hydroxyl ion density at catalyst interface, resulting in poor kinetics and negative catalytic performance. The obtained in-depth understanding could provide valuable clues for catalysis system design. Our method could also be useful to analyze other catalytic processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据