4.7 Article

Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger

期刊

APPLIED THERMAL ENGINEERING
卷 121, 期 -, 页码 294-301

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2017.04.074

关键词

Helical tube heat exchanger; Heat transfer; Exergy loss; Taguchi approach; Optimization

向作者/读者索取更多资源

In this research paper, numerical model of shell and helical tube heat exchanger is investigated to assess heat transfer coefficient and exergy loss. Four design parameters including pitch coil, tube diameter, hot and cold flow rate, which are more significant for the heat exchanger performance, were taken to consideration. Then, Taguchi approach is applied to figure out the optimum levels of the design factors. Sixteen cases with diverse design parameters are modeled and analyzed numerically. The results are indicated that tube diameter and cold flow rate are the most significant design parameters of heat transfer and exergy loss, respectively. Furthermore, the highest Nusselt number are achieved by more both cold and hot flow rates and also, heat transfer coefficient are reduced by increasing of pitch coil as well as by increasing of hot flow rate, the exergy loss increases. The optimum levels for heat transfer coefficient are: pitch 13 mm, tube diameter 12 mm, cold and hot flow rate 4 LPM. Furthermore, the optimum level for exergy loss are: pitch 13 mm, tube diameter 12 mm, cold and hot flow rate 1 LPM. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据