4.8 Article

Phosphorylated HBO1 at UV irradiated sites is essential for nucleotide excision repair

期刊

NATURE COMMUNICATIONS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms16102

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. Grants-in-Aid for Scientific Research [15K06994, 17K00548, 16K08580, 17K19615] Funding Source: KAKEN

向作者/读者索取更多资源

HBO1, a histone acetyl transferase, is a co-activator of DNA pre-replication complex formation. We recently reported that HBO1 is phosphorylated by ATM and/or ATR and binds to DDB2 after ultraviolet irradiation. Here, we show that phosphorylated HBO1 at cyclobutane pyrimidine dimer (CPD) sites mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites. Furthermore, HBO1 facilitates accumulation of SNF2H and ACF1, an ATP-dependent chromatin remodelling complex, to CPD sites. Depletion of HBO1 inhibited repair of CPDs and sensitized cells to ultraviolet irradiation. However, depletion of HBO1 in cells derived from xeroderma pigmentosum patient complementation groups, XPE, XPC and XPA, did not lead to additional sensitivity towards ultraviolet irradiation. Our findings suggest that HBO1 acts in concert with SNF2H-ACF1 to make the chromosome structure more accessible to canonical nucleotide excision repair factors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据