4.8 Article

Carbon Nanotube-Multilayered Graphene Edge Plane Core-Shell Hybrid Foams for Ultrahigh-Performance Electromagnetic-Interference Shielding

期刊

ADVANCED MATERIALS
卷 29, 期 31, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201701583

关键词

carbon nanotubes; electromagnetic interference shielding; graphene edge planes; nano-reinforcement; seamless junctions

资金

  1. National Natural Science Foundation of China [51502242, 51602258, 51432008, 51521061, 51332004]
  2. Program of Introducing Talents of Discipline to Universities [B08040]
  3. Fundamental Research Funds for the Central Universities [3102016ZY009]

向作者/读者索取更多资源

Materials with an ultralow density and ultrahigh electromagnetic-interference (EMI)-shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT-multilayered graphene edge plane (MLGEP) core-shell hybrid foam is fabricated using chemical vapor deposition. MLGEPs are seamlessly grown on the CNTs, and the hybrid foam exhibits excellent EMI shielding effectiveness which exceeds 38.4 or 47.5 dB in X-band at 1.6 mm, while the density is merely 0.0058 or 0.0089 g cm(-3), respectively, which far surpasses the best values of reported carbon-based composite materials. The grafted MLGEPs on CNTs can obviously enhance the penetration losses of microwaves in foams, leading to a greatly improved EMI shielding performance. In addition, the CNT-MLGEP hybrids also exhibit a great potential as nano-reinforcements for fabricating high-strength polymer-based composites. The results provide an alternative approach to fully explore the potentials of CNT and graphene, for developing advanced multifunctional materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据