4.8 Article

Sixteen isostructural phosphonate metal-organic frameworks with controlled Lewis acidity and chemical stability for asymmetric catalysis

期刊

NATURE COMMUNICATIONS
卷 8, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-017-02335-0

关键词

-

资金

  1. National Science Foundation of China [21371119, 21431004, 21401128, 21522104, 21620102001]
  2. National Key Basic Research Program of China [2014CB932102, 2016YFA0203400]
  3. Key Project of Basic Research of Shanghai [17JC1403100]
  4. Shanghai Eastern Scholar Program

向作者/读者索取更多资源

Heterogeneous catalysts typically lack the specific steric control and rational electronic tuning required for precise asymmetric catalysis. Here we demonstrate that a phosphonate metal-organic framework (MOF) platform that is robust enough to accommodate up to 16 different metal clusters, allowing for systematic tuning of Lewis acidity, catalytic activity and enantioselectivity. A total of 16 chiral porous MOFs, with the framework formula [M3L2(solvent)(2)] that have the same channel structures but different surface-isolated Lewis acid metal sites, are prepared from a single phosphono-carboxylate ligand of 1,1'-biphenol and 16 different metal ions. The phosphonate MOFs possessing tert-butyl-coated channels exhibited high thermal stability and good tolerances to boiling water, weak acid and base. The MOFs provide a versatile family of heterogeneous catalysts for asymmetric allylboration, propargylation, Friedel-Crafts alkylation and sulfoxidation with good to high enantioselectivity. In contrast, the homogeneous catalyst systems cannot catalyze the test reactions enantioselectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据