4.8 Article

Atomically Thin Layers of Graphene and Hexagonal Boron Nitride Made by Solvent Exfoliation of Their Phosphoric Acid Intercalation Compounds

期刊

ACS NANO
卷 11, 期 7, 页码 6746-6754

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b01311

关键词

graphite; boron nitride; graphene; intercalation; exfoliation; nanosheets

资金

  1. U.S. Army Research Office MURI grant [W911NF-11-1-0362]

向作者/读者索取更多资源

The development of scalable and reliable techniques for the production of the atomically thin layers of graphene and hexagonal boron nitride (h-BN) in bulk quantities could make these materials a powerful platform for devices and composites that impact a wide variety of technologies (Nature 2012, 490, 192-200). To date a number of practical exfoliation methods have been reported that are based on sonicating or stirring powdered graphite or h-BN in common solvents. However, the products of these experiments consist mainly of few-layer sheets and contain only a small fraction of monolayers. A possible reason for this is that splitting the crystals into monolayers starts from solvent intercalation, which must overcome the substantial interlayer cohesive energy (120-720 mJ/m(2)) of the van der Waals solids. Here we show that the yield of the atomically thin layers can be increased to near unity when stage-1 intercalation compounds of phosphoric acid are used as starting materials. The exfoliation to predominantly monolayers was achieved by stirring them in medium polarity organic solvents that can form hydrogen bonds. The exfoliation process does not disrupt the sp(2) pi-system of graphene and is gentle enough to allow the preparation of graphene and h-BN monolayers that are tens of microns in their lateral dimensions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据