3.9 Review

Mitochondrial Uncoupling and the Regulation of Glucose Homeostasis

期刊

CURRENT DIABETES REVIEWS
卷 13, 期 4, 页码 386-394

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1573399812666160217122707

关键词

Brown adipose tissue; FGF21; glucose homeostasis; mitochondrial uncoupling; beta-cells; UCP

资金

  1. MINECO [SAF2014-55725]
  2. Instituto de Salud Carlos III [PI14/00063]
  3. EU [HEALTH-F2-2011-277713]
  4. Generalitat de Catalunya [2014SGR-141]

向作者/读者索取更多资源

Introduction: Mitochondrial uncoupling is a physiological process that has direct and indirect consequences on glucose homeostasis. Non-shivering thermogenesis in brown adipose tissue, which is the most well-recognized biological process related to the physiological uncoupling of mitochondria, is caused by uncoupling protein-1 (UCP1), which mediates a regulated permeabilization of the mitochondrial inner membrane to protons. Conclusion: The uncoupled brown fat mitochondria are specialized to produce heat by oxidizing large amounts of substrates, making brown fat a sink that can actively drain glucose from circulation. This has been confirmed in human studies in which active brown fat was detected by glucose-derivative-based positron emission tomography scans. Thus, UCP1-mediated activation of brown fat appears to be a likely mechanism through which hyperglycemia could be ameliorated. In other tissues, mitochondria are reported to be mildly uncoupled by the UCP1-like proteins, UCP2 and UCP3. The primary role of these other UCPs does not appear to be the oxidation of a metabolic substrate (e.g., glucose) for heat production; instead, they participate in other processes, such as regulating the production of reactive oxygen species and transporting certain metabolites across the mitochondrial membrane. UCP2 activity influences glucose homeostasis by fine tuning intracellular events related to the cellular energy status, thereby controlling insulin secretion, food intake behavior and adiponectin secretion in pancreatic beta-cells, brain and white adipose tissue, respectively. UCP3 appears to be more specifically involved in promoting fatty acid oxidation in muscle, and is thus likely to influence glucose metabolism indirectly. Several genetic association studies have related polymorphisms in the genes encoding UCPs with obesity and/or type 2 diabetes phenotypes. In this review, we will focus on what is known about the specific role of mitochondrial uncoupling in glucose metabolism, and its implications in diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据