4.8 Article

Insights into the Surface Reactivity of Cermet and Perovskite Electrodes in Oxidizing, Reducing, and Humid Environments

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 30, 页码 25265-25277

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b05721

关键词

electrolysis; solid oxide electrochemical cells; NAP-XPS; perovskites; cermets

资金

  1. Fuel Cells and Hydrogen 2 Joint Undertaking under Project SElySOs [671481]
  2. European Union

向作者/读者索取更多资源

Understanding the surface chemistry of electrode materials under gas environments is important in order to control their performance during electrochemical and catalytic applications. This work compares the surface reactivity of Ni/YSZ and La0.75Sr0.25Cr0.9Fe0.1O3, which are commonly used types of electrodes in solid oxide electrochemical devices. In situ synchrotron-based near-ambient pressure photoemission and absorption spectroscopy experiments, assisted by theoretical spectral simulations and combined with microscopy and electrochemical measurements, are used to monitor the effect of the gas atmosphere on the chemical state, the morphology, and the electrical conductivity of the electrodes. It is shown that the surface of both electrode types readjusts fast to the reactive gas atmosphere and their surface composition is notably modified. In the case of Ni/YSZ, this is followed by evident changes in the oxidation state of nickel, while for La0.75Sr0.25Cr0.9Fe0.1O3, a fine adjustment of the Cr valence and strong Sr segregation is observed. An important difference between the two electrodes is their capacity to maintain adsorbed hydroxyl groups on their surface, which is expected to be critical for the electrocatalytic properties of the materials. The insight gained from the surface analysis may serve as a paradigm for understanding the effect of the gas environment on the electrochemical performance and the electrical conductivity of the electrodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据