4.6 Article

Local structural changes of nano-crystalline ZnFe2O4 during lithiation and de-lithiation studied by X-ray absorption spectroscopy

期刊

ELECTROCHIMICA ACTA
卷 246, 期 -, 页码 699-706

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2017.06.098

关键词

Lithium anodes; Nano-crystalline ZnFe2O4; XANES; EXAFS; Structural evolution

资金

  1. China Scholarship Council

向作者/读者索取更多资源

X-ray absorption spectroscopy was carried out to investigate local structural changes around Fe and Zn atoms of the nano-crystalline spinel ferrite ZnFe2O4 anode material at various states-of-charge during the 1st and 2nd lithiation/de-lithiation. From the X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), we propose a possible structure evolution process of the ZnFe2O4 electrode during the 1st discharge and charge cycle. A mixture of metallic iron, ZnO, metallic zinc, LiZn and Li2O phases seem to be formed as the cell is firstly discharged to 0.02 V. Instead of the original ZnFe2O4 spinel phase, the metallic iron and zinc particles are re-oxidized to Fe2O3 and ZnO phases during the subsequent de-lithiation. A reversible redox reaction between Fe2O3, ZnO and lithium ions is found in the 2nd cycle. The formation of SEI layer in the initial cycles plays a major role in the irreversible capacity of the electrode. The inactive disordered ZnO formed due to the conversion reaction of ZnFe2O4 during the 1st lithiation is probably the main reason for the poor electrochemical behavior of the nano-crystalline ZnFe2O4 electrode. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据