4.5 Article

The Interleukin-33/ST2 Pathway Is Expressed in the Failing Human Heart and Associated with Pro-fibrotic Remodeling of the Myocardium

期刊

出版社

SPRINGER
DOI: 10.1007/s12265-017-9775-8

关键词

Soluble ST2; IL-33/ST2 pathway; Cardiac; Fibrosis

向作者/读者索取更多资源

The interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) pathway is a potential pathophysiological mediator of cardiac fibrosis. Soluble ST2 (sST2) is one of the main isoforms of ST2 with strong prognostic value in cardiac disease. The exact role of sST2 in cardiac fibrosis is unknown. The aim of this study was (1) to investigate myocardial expression of the IL-33/ST2 pathway in relation to myocardial fibrosis in end-stage heart failure patients and (2) to study whether plasma sST2 is associated with histologically determined cardiac fibrosis. In 38 patients undergoing left ventricular assist device implantation, mRNA expression of sST2, total ST2, and IL-33 was measured in cardiac tissue obtained during the implantation. In the same tissue, histological fibrosis was digitally quantified and mRNA expression of pro-fibrotic signaling molecules, connective tissue growth factor (CTGF) and transforming growth factor beta 1 (TGF beta 1), was measured. In addition, plasma levels of sST2 were determined. Expression levels of IL-33/ST2 pathway factors in myocardial tissue were significantly associated with cardiac fibrosis and the expression levels of CTGF and TGF beta 1. Plasma levels of sST2 did not correlate with tissue expression of ST2, the amount of fibrosis or myocardial expression of pro-fibrotic signaling proteins. The interleukin-33/ST2 pathway is expressed in the failing human heart and its expression is associated with cardiac fibrosis and pro-fibrotic signaling proteins, suggesting a role in pro-fibrotic myocardial remodeling. Soluble ST2 levels in the circulation did not correlate with the amount of cardiac fibrosis or myocardial ST2 expression, however. Therefore, other pathophysiological processes such as inflammation might also substantially affect sST2 plasma levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据