4.7 Article

Bacterial Topography of the Healthy Human Lower Respiratory Tract

期刊

MBIO
卷 8, 期 1, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.02287-16

关键词

-

资金

  1. National Institutes for Health [UL1 TR000433, K23 HL130641, U01 HL098961, R01 HL114447]
  2. Department of Veterans Affairs [I01 BX001389, I01 CX000911]
  3. Michigan Institute for Clinical & Health Research
  4. Host Microbiome Initiative of the University of Michigan
  5. Michigan Center for Integrative Research in Critical Care
  6. CSCAR within the University of Michigan's Advanced Research Computing
  7. University of Michigan Center for Integrative Research in Critical Care

向作者/读者索取更多资源

Although culture-independent techniques have refuted lung sterility in health, controversy about contamination during bronchoscope passage through the upper respiratory tract (URT) has impeded research progress. We sought to establish whether bronchoscopic sampling accurately reflects the lung microbiome in health and to distinguish between two proposed routes of authentic microbial immigration, (i) dispersion along contiguous respiratory mucosa and (ii) subclinical microaspiration. During bronchoscopy of eight adult volunteers without lung disease, we performed seven protected specimen brushings (PSB) and bilateral bronchoalveolar lavages (BALs) per subject. We amplified, sequenced, and analyzed the bacterial 16S rRNA gene V4 regions by using the Illumina MiSeq platform. Rigorous attention was paid to eliminate potential sources of error or contamination, including a randomized processing order and the inclusion and analysis of exhaustive procedural and sequencing control specimens. Indices of mouth-lung immigration (mouth-lung community similarity, bacterial burden, and community richness) were all significantly greater in airway and alveolar specimens than in bronchoscope contamination control specimens, indicating minimal evidence of pharyngeal contamination. Ecological indices of mouth-lung immigration peaked at or near the carina, as predicted for a primary immigration route of microaspiration. Bacterial burden, diversity, and mouth-lung similarity were greater in BAL than PSB samples, reflecting differences in the sampled surface areas. (This study has been registered at ClinicalTrials. gov under registration no. NCT02392182.) IMPORTANCE This study defines the bacterial topography of the healthy human respiratory tract and provides ecological evidence that bacteria enter the lungs in health primarily by microaspiration, with potential contribution in some subjects by direct dispersal along contiguous mucosa. By demonstrating that contamination contributes negligibly to microbial communities in bronchoscopically acquired specimens, we validate the use of bronchoscopy to investigate the lung microbiome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据