4.7 Article

Polymyxin Combinations Combat Escherichia coli Harboring mcr-1 and blaNDM-5: Preparation for a Postantibiotic Era

期刊

MBIO
卷 8, 期 4, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.00540-17

关键词

Enterobacteriaceae; MCR-1; NDM-5; amikacin; aztreonam; carbapenem-resistant; polymyxins

资金

  1. National Institute of Allergy and Infectious Diseases of the National Institutes of Health [R01AI111990, R01AI090155]

向作者/读者索取更多资源

The rapid increase of carbapenem resistance in Gram-negative bacteria has resurrected the importance of the polymyxin antibiotics. The recent discovery of plasmid-mediated polymyxin resistance (mcr-1) in carbapenem-resistant Enterobacteriaceae serves as an important indicator that the golden era of antibiotics is under serious threat. We assessed the bacterial killing of 15 different FDA-approved antibiotics alone and in combination with polymyxin B in time-killing experiments against Escherichia coli MCR1_NJ, the first reported isolate in the United States to coharbor mcr-1 and a New Delhi metallo-beta-lactamase gene (bla(NDM-5)). The most promising regimens were advanced to the hollow-fiber infection model (HFIM), where human pharmacokinetics for polymyxin B, aztreonam, and amikacin were simulated over 240 h. Exposure to polymyxin B monotherapy was accompanied by MCR1_NJ re-growth but not resistance amplification (polymyxin B MIC from 0 to 240 h [MIC0h to MIC240h] of 4 mg/liter), whereas amikacin monotherapy caused regrowth and simultaneous resistance amplification (amikacin MIC0h of 4 mg/liter versus MIC240h of >64 mg/liter). No MCR1_NJ colonies were observed for any of the aztreonam-containing regimens after 72 h. However, HFIM cartridges for both aztreonam monotherapy and the polymyxin B-plus-aztreonam regimen were remarkably turbid, and the presence of long, filamentous MCR1_NJ cells was evident in scanning electron microscopy, suggestive of a nonreplicating persister (NRP) phenotype. In contrast, the 3-drug combination of polymyxin B, aztreonam, and amikacin provided complete eradication (>8 log(10) CFU/ml reduction) with suppression of resistance and prevention of NRP formation. This is the first comprehensive pharmacokinetic/pharmacodynamic study to evaluate triple-drug combinations for polymyxin-and carbapenem-resistant E. coli co-producing MCR-1 and NDM-5 and will aid in the preparation for a so-called postantibiotic era. IMPORTANCE A global health crisis may be on the horizon, as the golden era of antibiotics is under serious threat. We recently reported the first case in the United States of a highly resistant, Escherichia coli so-called superbug (MCR1_NJ), coharboring two of the most worrying antibiotic resistance genes, encoding mobile colistin resistance (mcr-1) and a New Delhi metallo-beta-lactamase (bla(NDM-5)). Worryingly, the medical community is vulnerable to this emerging bacterial threat because optimal treatment strategies are undefined. Here, we report the activity of an optimized combination using simulated human doses of commercially available antibiotics against MCR1_NJ. A unique triple combination involving a cocktail of polymyxin B, aztreonam, and amikacin eradicated the MCR-1- and NDM-5-producing E. coli. Each antimicrobial agent administered as monotherapy or in double combinations failed to eradicate MCR1_NJ at a high inoculum. To our knowledge, this is the first study to propose 3-drug therapeutic solutions against superbugs coharboring mcr-1 and bla(NDM), seeking to prepare clinicians for future occurrences of these pathogens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据