4.7 Article

Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites

期刊

CARBOHYDRATE POLYMERS
卷 171, 期 -, 页码 193-201

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2017.05.024

关键词

Cellulose nanocrystals; Metallic nanoparticles; Nanocomposites; Thermal stability; Biopolymers; Activation energy

资金

  1. Basque Country Government [IT718-13]

向作者/读者索取更多资源

Due to the potential of CNC-based flexible materials for novel industrial applications, the aim of this work is to improve the thermal stability of cellulose nanocrystals (CNC) films through a straightforward and scalable method. Based of nanocomposite approach, five different metallic nanoparticles (ZnO, SiO2, TiO2, Al2O3 and Fe2O3) have been co-assembled in water with CNCs to obtain free-standing nanocomposite films. Thermogravimetric analysis (TGA) reveals an increased thermal stability upon nanoparticle. This increase in the thermal stability reaches a maximum of 75 degrees C for the nanocomposites having 10 wt% of Fe2O3 and ZnO. The activation energies of thermodegradation process (Ea) determined according to Kissinger and Ozawa-Flynn-Wall methods further confirm the delayed degradation of CNC nanocomposites upon heating. Finally, the changes induced in the crystalline structure during thermodegradation were followed by wide angle X-ray diffraction (WAXD). It is also observed that thermal degradation proceeds at higher temperatures for nanocomposites having metallic nanoparticles. Overall, experimental findings here showed make nanocomposite approach a simple low-cost environmentally-friendly strategy to overcome the relatively poor thermal stability of CNCs when extracted via sulfuric acid assisted hydrolysis of cellulose. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据