4.6 Article

Radiative nonlinear 3D flow of ferrofluid with Joule heating, convective condition and Coriolis force

期刊

出版社

ELSEVIER
DOI: 10.1016/j.tsep.2017.06.006

关键词

Nonlinear thermal radiation; Ferrofluid; Three-dimensional flow; MHD; Joule heating; Convective condition

向作者/读者索取更多资源

Characteristics of heat transport mechanism in three-dimensional ferrofluid flow past a deformed surface subjected to the Coriolis and Lorentz forces are analyzed. The impacts of Joule heating, nonlinear thermal radiation, viscous dissipation and convective condition are also accounted. The carrier fluid (water) is embedded by Fe3O4 nanoparticles. The boundary layer approximations are employed in problem statement. Stretching transformations are utilized to form nonlinear ODE system from governed PDE system. The subsequent system is treated numerically via Runge-Kutta-Fehlberg method. Effects of relevant parameters on different flow fields are discussed comprehensively with help of graphs. It is established that the heat transfer rate is enhanced due to Coriolis and Lorentz forces. Furthermore, Fe3O4 nanoparticles enhance the Nusselt number significantly in comparison with Al2O3 nanoparticles. (C) 2017 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据