4.1 Article

Orange-Peel-Derived Carbon: Designing Sustainable and High-Performance Supercapacitor Electrodes

期刊

C-JOURNAL OF CARBON RESEARCH
卷 3, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/c3030025

关键词

activated carbon; bio-waste; energy storage; orange peel; supercapacitor

资金

  1. Polymer Chemistry Initiative, Pittsburg State University

向作者/读者索取更多资源

Interconnected hollow-structured carbon was successfully prepared from a readily available bio-waste precursor (orange peel) by pyrolysis and chemical activation (using KOH), and demonstrated its potential as a high-performing electrode material for energy storage. The surface area and pore size of carbon were controlled by varying the precursor carbon to KOH mass ratio. The specific surface area significantly increased with the increasing amount of KOH, reaching a specific surface area of 2521 m(2)/g for a 1:3 mass ratio of precursor carbon/KOH. However, a 1:1 mass ratio of precursor carbon/KOH displayed the optimum charge storage capacitance of 407 F/g, owing to the ideal combination of micro- and mesopores and a higher degree of graphitization. The capacitive performance varied with the electrolyte employed. The orange-peel-derived electrode in KOH electrolyte displayed the maximum capacitance and optimum rate capability. The orange-peel-derived electrode maintained above 100% capacitance retention during 5000 cyclic tests and identical charge storage over different bending status. The fabricated supercapacitor device delivered high energy density (100.4 mu Wh/cm(2)) and power density (6.87 mW/cm2), along with improved performance at elevated temperatures. Our study demonstrates that bio-waste can be easily converted into a high-performance and efficient energy storage device by employing a carefully architected electrode-electrolyte system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据