4.5 Article

Decreased PGF may contribute to trophoblast dysfunction in fetal growth restriction

期刊

REPRODUCTION
卷 154, 期 3, 页码 319-329

出版社

BIOSCIENTIFICA LTD
DOI: 10.1530/REP-17-0253

关键词

-

资金

  1. National Natural Science Foundation of China [81501254]
  2. Shanghai Municipal Health and Family Planning Commission [M20140422, 201540377, 201640033]
  3. Shanghai Jiao Tong University MedicineEngineering Fund [YG2013MS67]
  4. Shanghai Municipal Committee of Science and Technology [14ZR1443700, 17ZR1433000]

向作者/读者索取更多资源

Fetal growth restriction (FGR) threatens perinatal health and is correlated with increased incidence of fetal original adult diseases. Most cases of FGR were idiopathic, which were supposed to be associated with placental abnormality. Decreased circulating placental growth factor (PGF) was recognized as an indication of placental deficiency in FGR. In this study, the epigenetic regulation of PGF in FGR placentas and the involvement of PGF in modulation of trophoblast activity were investigated. The expression level of PGF in placental tissues was determined by RT-qPCR, immunohistochemistry and ELISA. DNA methylation profile of PGF gene was analyzed by bisulfite sequencing. Trophoblastic cell lines were treated with ZM-306416, an inhibitor of PGF receptor FLT1, to observe the effect of PGF/FLT1 signaling on cell proliferation and migration. We demonstrated that PGF was downregulated in placentas from FGR pregnancies compared with normal controls. The villous expression of PGF was positively correlated with placental and fetal weight. The CpG island inside PGF promoter was hypomethylated without obvious difference in both normal and FGR placentas. However, the higher DNA methylation at another CpG island downstream exon 7 of PGF was demonstrated in FGR placentas. Additionally, we found FLT1 was expressed in trophoblast cells. Inhibition of PGF/FLT1 signaling by a selective inhibitor impaired trophoblast proliferation and migration. In conclusion, our data suggested that the PGF expression was dysregulated, and disrupted PGF/FLT1 signaling in trophoblast might contribute to placenta dysfunction in FGR. Thus, our results support the significant role of PGF in the pathogenesis of FGR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据