4.6 Article

Microencapsulation of Live Cells in Synthetic Polymer Capsules

期刊

ACS OMEGA
卷 2, 期 6, 页码 2839-2847

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.7b00570

关键词

-

资金

  1. Defense Threat Reduction Agency [HDTRA-1-15-1-0045]

向作者/读者索取更多资源

In cell therapies, it is advantageous to encapsulate live cells in protective, semipermeable microparticles for controlled release of cytokines, growth factors, monoclonal antibodies, or insulin. Here, a modified electrospraying approach with an organic solution of poly(lactide-co-glycolide) (PLGA) polymer is used to create synthetic PLGA capsules that effectively protect live cells. Using a design of experiment (DOE) methodology, the effect of governing jetting parameters on encapsulation efficiency, yield, and size is systematically evaluated. On the basis of this analysis, the interaction between bovine serum albumin concentration and core flow rate is the most dominant factor determining core encapsulation efficiency as well as the microcapsule size. However, the interaction between shell solvent ratio and shell flow rate predominantly defines the particle yield. To validate these findings, live cells have been successfully encapsulated in microcapsules using optimized parameters from the DOE analysis and have survived the electrohydrodynamic jetting process. Extending the currently available toolkit for cell microencapsulation, these biodegradable, semi-impermeable cell-laden microcapsules may find a range of applications in areas such as tissue engineering, regenerative medicine, and drug delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据