4.8 Article

Ehrlich Reaction Evoked Multiple Spectral Resonances and Gold Nanoparticle Hotspots for Raman Detection of Plant Hormone

期刊

ANALYTICAL CHEMISTRY
卷 89, 期 17, 页码 8836-8843

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.7b01267

关键词

-

资金

  1. National Natural Science Foundation of China [21275075, 61605084]

向作者/读者索取更多资源

Surface-enhanced Raman scattering (SERS) by use of noble metal nanoparticles has become a powerful tool to determine a low-concentration target by unique spectral fingerprints, but it is still limited to the Raman-inactive and nonresonant biomolecules such as amine acids, proteins, and hormones. Here, we report an Ehrlich reaction based derivative strategy in combination with gold nanoparticles (Au NPs) hotspots for the selective detection of indole-like plant hormones by SERS spectroscopy. Ehrlich reaction of p-(dimethylamino)benzaldehyde (PDAB) with the indole ring chemically transformed plant hormone indole-3-butyric acid (IBA) into a Raman-active and resonant derivative with an extended pi-conjugated system in the form of a cation, which produced a new absorption band at 626 nm. On the other hand, cationic IBA PDAB highly evoked the aggregation of Au NPs with negative citrate ligands to form the effective Raman hotspots and gave rise to the new absorption ranging from 600 to 800 nm. Significantly, the spectral overlap among IBA PDAB, aggregated Au NPs, and the exciting laser initiated the multiple optical resonances to generate the ultrahigh Raman scattering with a sensitive limit of 2.0 nM IBA. The IBA in the whole sprouts and various parts of pea, mungbean, soybean, and black bean has been identified and quantified. The reported method opens a novel avenue for the SERS detection of Raman-inactive analyte by a proper derivation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据