4.6 Article

Fault-tolerant model predictive control of a direct methanol-fuel cell system with actuator faults

期刊

CONTROL ENGINEERING PRACTICE
卷 66, 期 -, 页码 99-115

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.conengprac.2017.06.008

关键词

Fault-tolerant control; Direct methanol fuel cell; Model-based fault detection and isolation; Fuel economy; System efficiency; Virtual sensor; Stability; Model predictive control

向作者/读者索取更多资源

This paper investigates fault tolerant model predictive control (MPC) of a direct methanol fuel cell (DMFC) system with several faults in the methanol feeding pump. An active FTMPC strategy with a hierarchal structural design is developed. The focus here is on fault detection and isolation (FDI) and the implementation of fault tolerant strategies within the control algorithm. To this end, a model-based FDI scheme with virtual sensors is first developed by means of the real-time diagnosis of fault occurrence during operation. Thereby, several faults in the methanol pump are characterized and the information integrated into the MPC algorithm in each fault case. Strategies are presented to reconfigure the active fault-tolerant MPC to keep the DMFC system stable in case of a feeding failure. Moreover, economic, stability and lifetime characteristics are also integrated into the active fault-tolerant MPC. The proposed FDI and FTMPC scheme is tested experimentally in a DMFC test rig with a 5-cell DMFC stack to demonstrate the effectiveness and robustness of the designed approach. Several fault scenarios with the FTMPC are shown. Particularly in the case of fuel cells, fault tolerance is necessary to meet the goals of long-lasting system stability and efficiency. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据