4.8 Review

Inverse Opal Scaffolds and Their Biomedical Applications

期刊

ADVANCED MATERIALS
卷 29, 期 33, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201701115

关键词

biomaterials; inverse opals; porous scaffolds; regenerative medicine; tissue engineering

资金

  1. National Institutes of Health [R01 AR060820]
  2. NIH Director's Pioneer Award [DP1 OD000798]
  3. startup funds from Washington University in St. Louis and the Georgia Institute of Technology
  4. National Cancer Institute of the National Institutes of Health Pathway to Independence Award [K99CA201603]

向作者/读者索取更多资源

Three-dimensional porous scaffolds play a pivotal role in tissue engineering and regenerative medicine by functioning as biomimetic substrates to manipulate cellular behaviors. While many techniques have been developed to fabricate porous scaffolds, most of them rely on stochastic processes that typically result in scaffolds with pores uncontrolled in terms of size, structure, and interconnectivity, greatly limiting their use in tissue regeneration. Inverse opal scaffolds, in contrast, possess uniform pores inheriting from the template comprised of a closely packed lattice of monodispersed microspheres. The key parameters of such scaffolds, including architecture, pore structure, porosity, and interconnectivity, can all be made uniform across the same sample and among different samples. In conjunction with a tight control over pore sizes, inverse opal scaffolds have found widespread use in biomedical applications. In this review, we provide a detailed discussion on this new class of advanced materials. After a brief introduction to their history and fabrication, we highlight the unique advantages of inverse opal scaffolds over their non-uniform counterparts. We then showcase their broad applications in tissue engineering and regenerative medicine, followed by a summary and perspective on future directions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据